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１ 序論 
１．１ 背景 
 近年、国際的な海上物流量の増加と輸送コスト低減に

伴い、コンテナ船の大型化が進んでいる。中には

10,000TEUを超える超大型コンテナ船も現れ、使用鋼板

は現行船級規則の規定範囲を超える程に極厚なものとな

ってきた。このような従来使用実績のない極厚鋼板の実

用に際して、脆性破壊に対する不安が高まっている。船

体構造設計においては、万が一脆性き裂が発生しても、

それが船体折損のような致命的な事故に繋がらないよう、

伝播するき裂をアレスト（停止）させることを重要視す

る“Fail Safe Design”の思想が取り入れられているが、

極厚鋼板の脆性き裂伝播停止挙動が従来鋼板と異なる可

能性があることが分かってきた[1]。 
コンテナ船大型化の気運とこのような報告を受けて、

2007年、日本海事協会は大型コンテナ船設計技術基準の

策定を目的とする脆性き裂アレスト設計委員会を設置し

て、脆性き裂伝播停止に関する従来知見の見直し、及び、

大型コンテナ船強力甲板部に必要な材料靭性値、継手部

構造を模索する各種試験を実施してきた。また、日本溶

接協会も2009年よりFTE委員会WG-Aを発足させ、汎

用的なアレスト特性評価試験方法規格の作成を目的とし

て各種活動を行ってきた。 
そして、2009 年 9 月、日本海事協会は板厚が 75mm

の以下の鋼板において、材料アレスト靭性値Kcaが
6000N/mm3/2 あれば発生した脆性き裂をアレストさせる

ことが出来るとの脆性き裂アレスト設計指針を発表した

[2]。しかし、本指針は各種試験に基づく実験事実として

規定されており、破壊力学に基づいた理論で裏付けされ

てはいない。より合理的な設計指針の作成のためには、

長大き裂進展による必要靭性値飽和現象である 40 年来

未解決の長大き裂問題の解決が求められている。 
１．２ 目的 
本研究では、この極厚鋼板脆性き裂アレスト問題への

社会的動向を踏まえ、脆性き裂アレスト設計委員会、FTE
委員会WG-Aに参加し、実験及び解析を行うことで、40
年来未解決の長大き裂問題を解決することを目的とする。

さらに、得られた知見を整理し、より合理的な大型コン

テナ船アレスト設計指針の作成に向けた提案を行う。 

２ 理論 
２．１ 線形破壊力学によるアレスト性能評価 
線形破壊力学では、脆性き裂伝播の駆動力である応力

拡大係数ܭと、温度依存性を持つ材料アレスト靭性ܭ௖௔を
比較して、ܭ ൐ ܭ、௖௔の場合にはき裂が伝播しܭ ൌ のܽܿܭ
時点でき裂がアレストすると考える。材料アレスト特性

であるܭ௖௔はFig.1に示す標準ESSO試験で求められる。

試験片に温度勾配を付けて脆性き裂を発生させ、き裂進

展に伴い増大するܭを、高温部突入によるܭ௖௔の増大が上

回った時にき裂はアレストし、停止き裂長さと初期負荷

応力から算出されるܭが停止温度におけるܭ௖௔となる。 

 
Fig. 1 Standard ESSO test specimen 

２．２ 局所破壊応力モデル 
本研究では、局所破壊応力仮説に立脚し、伝播き裂先

端の塑性応力場と降伏応力の歪速度依存性を考慮するこ

とにより、基本的材料特性から動的破壊靭性値を算出し、

さらに、鋼板表面に生成するリガメント・シアリップに

よるき裂閉口効果と鋼板内部のき裂が先行する形状を考

慮することにより、脆性き裂伝播停止挙動を再現した既

存モデル[3]に、新たに塑性拘束緩和の効果を導入した新

モデルを作成し、解析を行った。 
２．３ 塑性拘束緩和効果の導入 
 局所破壊応力モデルでは、Achenbachらが求めた線形

硬化材料に対する解析解[4]を基に、動的に伝播するき裂

先端塑性域内の応力分布を次式で仮定している。 
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はሾݎ, ܸ、方向応力成分ݕሿにおけるߠ はき裂伝播速度、ߪ௒は



2 
 

降伏応力、ߥはポアソン比、ܭௗは動的応力拡大係数、ݏは
き裂先端近傍の応力特異性の強さを表す指数、∑ ሾߠ, ܸሿ௬௬

は応力の強さを表わすパラメータであり，平面歪の場合

∑ ሾ0, ܸሿ௬௬ は約4、平面応力場合は約2 √3⁄ であることが知

られている。 
ここで、局所破壊応力モデルを用いた過去の計算では、

二次元問題であることと前述のように板厚中心が平面歪

に近いことから(1)式において∑ ሾ0, ܸሿ௬௬ の値を4で計算し

ていた。しかし、長大き裂問題の原因の一つとして、K値
増加に伴う塑性拘束の低下（塑性域が大きくなる）とこ

れに伴うき裂先端応力の低下が想定されること、さらに、

実際の破壊現象では板厚中心点だけの破壊条件で決まる

わけではなく、ある程度の範囲が影響することの二点を

踏まえ、本研究ではFig. 2に示すように，∑ ሾ0, ܸሿ௬௬ の板

厚方向分布を直線で近似し，範囲ߚ௢tで平均化した

∑ ሾ0, ܸሿ௬௬ の値を塑性拘束緩和の影響を考慮した値として

採用した。この際、板表面から平面歪が達成される板内

部までの距離Dを、(2)式に示す動的き裂の塑性域寸法ݎ௉ௗ
の4倍として計算した。ここで，ߙは縦弾性係数ܧと線

形硬化則の接線係数ܧ௧を用いてߙ ൌ ௧ܧ ⁄ܧ で表される

パラメータで，ܥ݁ݐܽݎは降伏歪ߝ௒に対する塑性歪ߝ௣の
比率であり，ܥ݁ݐܽݎ ൒ 1である． 
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Fig. 2 ∑ ሾ0, Vሿ୷୷  versus thickness 

 
３ 温度勾配型ESSO試験の解析 
３．１ 解析条件 
本解析は、世の中に広く普及している板厚40mmの

YP40鋼を用いた標準サイズの試験片に対して，負荷応力

を広範囲で変化させ，塑性拘束緩和が脆性き裂の伝播・

停止にどのような影響を及ぼすのか評価する．限界破壊

応力は局所破壊応力モデルに計算事例[3]を参考にして

4500MPaに設定した．また，ߚ௢とܥ݁ݐܽݎは本モデルから

は決められないため，塑性拘束緩和が起きた状態でアレ

ストした実験結果を参照して決める必要がある．本解析

では，それぞれ1/1.5と5に設定した． 
３．２ 解析結果 
本解析を，本研究の新モデルと∑ ሾ0, ܸሿ௬௬

തതതതതതതതതതതത=4で一定とす

る従来モデルで実行した．アレスト靭性値Kcaとき裂停止

点の温度Tはアレニウス型の依存関係にあることが知ら

れている。Fig.3に従来モデルによる解析結果と新モデル

による解析結果の比較を示した。

 
Fig. 3 Arrhenius plot of conventional model 

and new model 
従来モデルによる解析結果が示すように、本来であれ

ば相関を示す直線上にプロット点が載るはずである．し

かし，塑性拘束緩和の影響を考慮した本研究の新モデル

では，負荷応力が低いときには従来モデルと同様の解析

結果が得られる一方で，負荷応力がある値を超えて大き

くなると，この直線から上側に逸れた位置にプロット点

が得られる．ここでは，き裂伝播の途中で，∑ ሾ0, ܸሿ௬௬
തതതതതതതതതതതതの

値が急激に下がり始め，これに伴い，き裂伝播速度も急

速に減速し，アレストに至っている． 
４ 温度勾配型ESSO試験 
４．１ 実験条件 
 ここでは，上記の解析の結果が妥当であることを実際

に温度勾配型ESSO試験を行うことで検証する．ここで，

上記の結果がき裂長さ200～300mmのデータでもアレ

ニウスプロットから上側に逸れた位置にプロット点が得

られることから，長大き裂問題の本質的な要因はき裂長

さの長短ではなく，試験板突入時の応力拡大係数ܭの大小

であると考えられるため，板厚30mmの標準サイズの試

験板を用いて実験を行った． 
 試験体数は2体で，負荷応力は，事前に鉄鋼会社が同

試験板で行った結果を参考にして，高めの300MPaと

310MPaに設定した．Validな結果のみのアレニウスプロ

ットをFig. 4に示す． 
４．２ 実験結果 
 実験結果を見てみると，上記の解析と同様の結果を，

本研究で実施した2体の高負荷応力ESSO試験で示すこ
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とができた．以上の結果より，長大き裂問題の本質的な

要因が試験板突入時のܭの大小であるという本研究の仮

説の妥当性が示唆される． 

 

Fig. 4 Result of gradient-type ESSO test 
５ 模擬混成型ESSO試験 
５．１ 実験条件 
 ここでは，塑性拘束緩和の効果がより実船に近い条件

において脆性き裂の伝播・停止にどのような影響を及ぼ

すのかを確認するため，Fig. 5に示す模擬混成型ESSO
試験を行った．混成型ESSO試験のような溶接部は存在

しておらず，温度分布のみき裂を伝播させるものであり，

混成型ESSO試験の結果と大差ないと考えられる． 

 
Fig. 5 Quasi duplex-type ESSO test 

 試験体数は2体で，試験板の狙い温度は2Ԩに設定し

た．Fig. 4の結果とこの狙い温度から，狙いܭ௖௔を求める

と，約6000N mmଷ ଶ⁄⁄ である．また，負荷応力はそれぞ

れ240MPaと270MPaに設定した．尚，試験板突入時

のܭが長大き裂問題の本質的な要因であるとの仮説から，

本実験では助走溶接部の距離を300mmに加工している． 
 ５．２ 実験結果 
 Fig. 6に模擬混成型ESSO試験の結果を示す．この結

果より，温度が一定型でも，高負荷応力下でき裂が止ま

るという結果となった．しかし，今回の試験のき裂アレ

スト時の静的応力拡大係数は，試験板の狙いܭ௖௔である約

6000N mmଷ ଶ⁄⁄ を大きく上回る値であり，ܭ ൐ ௖௔にもかܭ

かわらずき裂がアレストするという従来の破壊力学の知

識では説明することの出来ない結果となった． 

 

Fig. 6 Result of quasi duplex-type ESSO test 
６ 数値モデル解析と考察 
６．１ 温度勾配型ESSO試験の再現解析 
 本解析では，本研究で行った温度勾配型ESSO試験を

模した解析条件で解析を行い，その結果と実験結果との

比較を行う．基本的な解析条件は，実験と同様の値を採

用しているが，ߚ௢とܥ݁ݐܽݎはそれぞれ1/1.1と8に設定し

た．また，試験板の限界破壊応力は，Fig. 4 で示した実

験結果のうち，ܭ௖௔のアレニウスプロットの中心近傍に位

置する負荷応力162MPaのプロットと解析結果が合うよ

うに合わせ込みを行い，4594MPaに設定した．Fig. 7の

解析結果を見てみると，緩和の効果が強すぎるため，実

験結果と比べて停止き裂長さが短くなっている． 

 

Fig. 7 Simulation result of gradient-type ESSO test 
 しかし，従来モデルによる解析結果が示す様に，プロ
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ット点がܭ௖௔のアレニウスプロットの直線から上側に逸

れた位置に得られるという本研究の仮説に関しては，実

験と同様の傾向を示すことができた． 
６．２ 模擬混成型ESSO試験の再現解析 
 前節と同様に，模擬混成型ESSO試験の実験結果を模

した解析条件で解析を行った．ߚ௢とܥ݁ݐܽݎと限界破壊応

力に関しては温度勾配型ESSO試験と同じものを使用し

ている．実験と解析の結果の比較をFig. 8に示す． 

 

Fig.8 Simulation result of quasi duplex-type ESSO test 
 結果の比較を見ると，非常によく一致していることが

わかある．これより，高負荷応力下においてܭがܭ௖௔を上

回っているにもかかわらず，き裂がアレストするのは塑

性拘束緩和の効果が採用するためだと考えられる． 
 
６．３ 長大き裂問題の解明 
 本解析では，広幅のܭ௖௔が大きくなっても対応する温

度の標準のܭ௖௔はこれに比例しないという長大き裂問題

の発端となった有効ܭ(ܭ௘௙௙)の仮説の図[5]を再現すると

ともに，板厚とYPの変化によってܭ௘௙௙がどのように変

化するのかについて考察する．代表例として，YP24にお

ける板厚ごとのܭ௘௙௙をFig. 9に示す．得られた図が数々

の実験によるܭ௘௙௙のデータと非常に良い一致を示す． 

 

 
Fig.9 Relation of Ultra-wide ܭ௖௔ and ܭ௘௙௙ (YP24) 

以上より，有効ܭの仮説の本質は，破壊に寄与する有効

なܭの減少ではなく，塑性拘束の緩和によって，き裂の伝

播が継続できなくなることによるアレストだということ

がわかった． 
 
7 結論と今後の方針 
 本研究では、40年来未解決の長大き裂問題を解明する

ことと，より合理的な大型コンテナ船アレスト設計指針

の作成に向けた提案を行うことの2つの目的を達成する

ため，種々の実験及び解析を行い，以下の結論を得た． 
・未破断リガメント（シアリップ）によるき裂閉口効果

を考慮した局所破壊応力モデルに，塑性拘束緩和の効

果を取り入れた新モデルを構築した． 
・負荷応力を大きくした温度勾配型ESSO試験より，試

験板突入時のܭが大きくなると，塑性拘束緩和の影響で

き裂が早期にアレストし，現在の破壊力学の知識であ

るܭ௖௔の温度依存性を示す曲線とは異なる線が存在す

ることを実証した．また数値モデルで再現した． 
・試験板突入時の応力拡大係数ܭが大きくなることで，塑

性拘束緩和が起こり，き裂が早期にアレストする現象

を超広幅の混成型ESSO試験においても再現すること

ができた． 
・負荷応力を大きくした模擬混成型ESSO試験より，ܭが
௖௔を上回っているにもかかわらず，き裂がアレストすܭ

るという従来の破壊力学では説明することのできない

結果を得ることができた． 
・本研究で構築したモデルを用いて，長大き裂問題の基

となった有効ܭの仮説の図を再現することができた． 
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