(東京大学大学院工学系研究科 システム創成学科専攻) 現実性と再現性に優れた脆性き裂伝播シミュレーションの実現に向けた研究 Proposal for Advanced Brittle Crack Propagation Simulation Incorporating Fracture Energy Consumption

					1 F
(2023年1	月 25 日提出	出)			
Keywords:	脆性破壊,	エネルギー散逸,	破面粗さ,	機械剛性	

1. 序論

1.1 背景

溶接構造物の構造健全性を確保する上で最も 重要な課題は、脆性破壊の防止である。脆性き裂 は 1000m/s~2000m/s で伝播することが実験的経 験則から判明しており、き裂伝播現象が非常に短 い時間で行われる。この高速き裂伝播現象の研究 は過去多くの研究者によりなされてきたが、実構 造物への適用を考えたときに理論解や実験デー タの延長のみではその適用範囲に限界があり、と くにコンテナ船の大型化をはじめとした構造物 の巨大化と複雑化に伴い、脆性き裂伝播の解析的 研究の必要性が高まっている。本研究では脆性き 裂伝播のクライテリオンを検討する上で重要な 因子になると考えられているき裂伝播中のエネ ルギー散逸則を考慮した鋼材脆性き裂伝播シミ ュレーションの提案を最終目標としている。また 実験と実構造物間での条件の差異をなくす、とい う観点において、ばねを用いた低剛性試験機の提 案を行う。

1.2 先行研究

き裂伝播現象をエネルギー収支のアプローチ から最初に理論を提示した Griffith[1]は物体が破 壊し新しい表面が形成される際に外部からのエ ネルギーを必要とするという考え方を示し、これ を表面エネルギーと定義した。き裂は外力仕事や ひずみの解法によって供給されるエネルギーが 表面エネルギーを上回る場合にのみき裂が発 生・伝播する。Anderson[2]はこの表面エネルギー は形成された破面の実弾面積に比例するという 理論を提唱した。つまりき裂伝播と形成される破 面の面積=破面粗さが密接な関係にあるというこ とである。

Mott[3]は Griffith によって提唱された理論を動 的なき裂伝播現象に対して拡張した。動的なき裂 伝播に対しては、供給エネルギーのうち、散逸エ ネルギーとして消費されなかった余剰分がき裂 の運動エネルギーに変化するという関係性にあ る。この散逸エネルギーは高速き裂伝播現象を扱 う上で重要な役割を持っている。エネルギー収支 の式から散逸エネルギー量が伝播き裂の運動に 密接にかかわっていることは明確であり、エネル

学籍番号 37-216456	八オ	卜 透
指導教員	川畑	友弥

ギー散逸則が把握できれば、脆性き裂伝播停止性 能に直結することになる。しかしながら散逸エネ ルギーは様々な要因によって変化するため、現状 としては散逸エネルギーに対して影響を及ぼし ている主要な要因が不明瞭な状態が続いている。

本研究にて、散逸エネルギーの主要因の一つで ある破面粗さの測定値そのものが、散逸エネルギ ーを知るための有効な手段であることを提示す る。散逸エネルギーの内訳を調査した過去の多く の文献は、塑性変形を伴わない高度な脆性材料で は散逸の主要因が表面エネルギーであることを 報告しており、表面エネルギーと破面粗さが比例 関係にあることは先に示した。Sharon[4]は破面粗 さとエネルギー解放率の関係を調査しいい精度 で比例関係にあることを示した。また Sharon は き裂伝播速度と破面粗さの関係も調査し、こちら もいい精度での比例関係にあることを示してい る。Nakamura[5]はアクリル樹脂を用いて破面粗 さが試験片形態や負荷状態によりき裂速度に対 する上昇傾向が異なることを示した。

Fig. 1 Relationship between crack speed and fracture surface roughness compared over several types of specimen [5].

2. 実験

2.1 目的

本研究では産業上極めて重要な鋼材における き裂伝播停止技術を進歩させるため、同現象の数 値解析技術を進化させる。全章のアクリル材料で 実施した実験と同様、試験片形状や負荷モードを 変化させて実験を行い、破面粗さ測定を通じて鋼

Fig. 2 Configuration of the specimens used in this study.

材とアクリル樹脂間における差異の有無、ひいて は散逸エネルギー決定則について検討を進めて いく。

2.2 試験概要

SM490A を供試材に-196℃で Fig. 2 に示す試験片 を用いて曲げ試験、逆進曲げ試験、および引張試 験を実施した。また各試験片のき裂進展経路に沿 って等間隔でひずみゲージを貼付し、き裂伝播速 度の測定を試みた。

2.3 実験結果

ひずみゲージから得られたデータを基にき裂 伝播距離とき裂速度の関係を示したものが Fig. 3 である。き裂伝播に従い、曲げ負荷においてき裂 伝播速度は減少、引張試験においては上昇、逆進 曲げについては一定となる傾向が確認された。

Fig. 3 Experimental result of crack speed based on propagating crack length

実験で得られた破面をレーザー顕微鏡で観察 および解析を行い、き裂伝播距離ごとに破面粗さ を計測した。本研究では算術平均高さ Ra を破面 粗さの指標として用いた。なお平均高さの基準線 はき裂伝播方向で平行である。得られた結果から 破面粗さとき裂伝播速度の関係性を示した図が Fig.4である。同様のき裂速度においても試験片 形状および負荷状態により破面粗さが異なるこ とが鉄鋼材料においても確認された。

Fig. 4 Relationship between crack velocity and fracture surface roughness

次に実験結果を、応力拡大係数を用いて整理 することを試みた。伝播き裂先端の静的応力拡大 係数をそれぞれの試験片形状において取得。その 後 Rose の式[6]を用いて、実験で得られたき裂伝 播速度を利用して動的応力拡大係数を算出した。 動的応力拡大係数と破面粗さの関係を示した図 が Fig. 5 である。特に通常曲げ R=4 の試験結果に おいてバンドから上振れしているデータが散見 されるものの、有限要素法解析による伝播解析で、 き裂先端の動的応力拡大係数さえ評価すれば、与 えるべき散逸エネルギーが位置的に決定できる ことを示しており、長年の課題でもあった散逸エ ネルギーの決定方法に一石を投じるものである。

Fig. 5 Relationship between dynamic stress intensity factor and fracture surface roughness

3. 散逸エネルギー自己決定型脆性き裂伝播 解析

3.1 目的

これまで限界破壊応力を中心に構築された脆 性き裂伝播解析技術は散逸エネルギーを与える ことで再現性の高い結果を得られることは報告 されているものの、この散逸エネルギー量は実験 結果によるものであり、実構造物への反映や解析 の自由度という観点で考えると対応力は弱かっ た。本研究では解析中の諸量に基づき散逸エネル ギーを予測するアルゴリズムについて検討する。

3.2 解析手法

本研究においてはエネルギー散逸則を研究す る上で Cohesive Zone Model を利用した動的 FEM 陽解法解析を実施する。き裂伝播面に粘着表面を 設定し、この粘着表面の剥離の限界条件、すなわ ち脆性き裂発生および進展のクライテリオンと して局所限界破壊応力を用いた。また節点組が結 合力を失う際に系から奪い去る破面形成エネル ギー、言い換えるとき裂進展に伴い系から吸収す る表面エネルギーをFig.6に示すように定義した [5]。き裂進展の評価については各節点における 損傷変数が非 0 値となった時点でその節点をき 裂が伝播したとしている。

Fig. 6 Dissipation method of fracture surface energy on crack propagation analysis

3.2 解析結果

実験においてき裂進展に従い、破面粗さが変化 していく様子が確認された。破面形成エネルギー と破面粗さが関係しているという仮定に基づく と、き裂伝播にしたがい、破面形成エネルギーは 変化していくと考えられる。本解析においては有 限要素法解析モデルにおいてき裂伝播方向に 5mm ずつ異なる粘着表面を定義し、それぞれの 粘着表面で独立に破面形成エネルギーを定義で きる解析モデルを作成した。

破面形成エネルギーの決定に関して、前章まで に脆性き裂伝播時の破面粗さは負荷状態に依ら ず動的応力拡大係数で整理できることを示した。 ここでは以下の式を用いて破面形成エネルギー を定義した。ここでαはき裂伝播長さである。き 裂伝播速度はき裂中央部の損傷変数の非 0 値の 値と動的ステップの時刻から計算した「。

$$G_{c}(a) = \frac{6 \times \log_{10} K_{d}(a=0)}{K_{d}^{2}}$$
(1)

Fig. 7 に通常曲げ R=1 モデルの結果を、Fig. 8 に引張試験モデルの結果をそれぞれ実験によっ て得られたき裂伝播速度と比較した形で示す。曲 げモデルについては実験結果とほぼ同等の結果 を得ることができた。引張試験モデルについては 若干上振れているものの実験結果と近いき裂伝 播速度を得ることができた。

以上より、実際の破面粗さが判らなくても自動 的に破面形成エネルギーを計算中に自己決定す るアルゴリズムが確立したといえるだろう。これ までの動的破壊力学研究の中で画期的な前進で ある可能性がある。

Fig. 7 Varying Gc analysis of normal bending R=1 model

4. ばねを用いた低剛性試験機の提案

4.1 目的

本研究は実験室中にて行われる材料の健全性 評価試験と実際の構造物中において、鉄鋼材料が おかれる環境の違いに起因する不明瞭な安全評 価の是正に目的をおいている。本章においては健 全性評価試験の試験方法を工夫することでこの 差異を埋めることを狙いとしている。

4.2 ポップイン現象

破壊靭性試験において、靱性不均一を有する溶 接部を対象とするとき、しばしばポップインと呼 ばれる微小な荷重低下を伴う微小割れが生じる。 このポップインを、脆性破壊の発生とみなすか、 許容するかは、試験規格が規定するポップインの 許容判定基準による。試験機の剛性の高さである。 これは試験片の材料特性は一切関係がなく、試験 機の都合によるものである。巨大な構造物では、 脆性き裂が万が一発生した場合においても外力

(荷重)一定状況がキープされているが、試験片 のサイズが限定される実験室実験においては、基 本的に破壊靭性試験は脆性き裂伝播時において 変位一定条件とみなされる状態となる。き裂が進 展するとともにリガメント断面が顕著に減少し 公称ネット応力が上昇するがいかに高速で作動 するサーボ弁を用いても亀裂の動きに追随し荷 重を増加させるほどの高速制御ができないから である。そのためき裂発生時には負荷荷重が実質 的に低下し、それによってき裂が停止、結果とし てポップインき裂として観察されることがある。 このき裂停止は実構造物では停止しない可能性 がある。そこで実験室の小型試験機にて実施する 破壊靭性試験において、治具中に低剛性のばねを 挿入し破壊靭性試験を行うことを考える。き裂が 発生したとき、ばねの効果により、完全な荷重一 定条件とはならないまでも、荷重低下の量はばね を挿入しなかった場合のそれと比較したときに、 小さくなることが予想される

4.3 有限要素法解析によるばね定数の提案

Fig. 9 1/4 model of tapered specimen with a spring element

ねを再現することができる。なおき裂進展は節点 解放法を用いて再現し、様々な条件下における荷 重低下率を取得した。

き裂発生時のき裂口開口変位、微小き裂進展長 さの条件を変化させ、それぞれの条件でばね定数 を変えて解析を行い、荷重変化率をプロットした グラフが Fig. 10 である。実験室の鋼材治具の想 定ばね定数と比較したとき、適切なばね定数をも つばねを使用すれば荷重低下率を 70~80%まで 抑えることが可能であることが示唆される結果 となった。

Fig. 10 Load drop ratio vs. spring constant

5. 結言

- 本研究の結果から以下の内容を結言とする。
- 試験片形状や負荷状態は破面粗さに影響を 及ぼし、これは材料に依らないことが判明 した。
- ・ 破面粗さを支配するパラメータとしてき裂 先端の動的応力拡大係数が有効であること が示唆された。
- 動的応力拡大係数を用いることで散逸エネ ルギー自己決定型脆性き裂伝播シミュレー ションを行うことが可能になることが示唆 された。
- 適切なばね定数を持つばねを挿入した治具 を用いることで微小き裂発生時の荷重低下 率を大幅に抑えることが可能になり、実構 造物中と同様な荷重一定条件で試験を行う ことが可能であることが示唆された。

参考文献

- A. A. Griffith, The phenomena of rupture and flow in solids, Mechanical Engineering A221, 163-198 (1920)
- [2] T. L. Anderson, Fracture Mechanics, CRC Press (2005)
- [3] N.F. Mott, Brittle fracture in mild steel plates, Engineering 165, 16–18 (1947).
- [4] 中村徳孝、修士学位論文, 東京大学 (2021年)
- [5] 川畑、稲見、粟飯原:破面形成エネルギーを考慮 した高張力鋼の脆性き裂伝播数値モデルの構築 第1報-,日本船舶海洋工学論文集, Vol.16, p.77-87 (2012)